Problem:
g(f(x),y) -> f(h(x,y))
h(x,y) -> g(x,f(y))
Proof:
Complexity Transformation Processor:
strict:
g(f(x),y) -> f(h(x,y))
h(x,y) -> g(x,f(y))
weak:
Matrix Interpretation Processor:
dimension: 1
max_matrix:
1
interpretation:
[h](x0, x1) = x0 + x1 + 229,
[g](x0, x1) = x0 + x1 + 52,
[f](x0) = x0 + 80
orientation:
g(f(x),y) = x + y + 132 >= x + y + 309 = f(h(x,y))
h(x,y) = x + y + 229 >= x + y + 132 = g(x,f(y))
problem:
strict:
g(f(x),y) -> f(h(x,y))
weak:
h(x,y) -> g(x,f(y))
Matrix Interpretation Processor:
dimension: 4
max_matrix:
[1 0 0 1]
[0 0 0 1]
[0 0 0 1]
[0 0 0 1]
interpretation:
[1 0 0 1] [1 0 0 0] [0]
[0 0 0 1] [0 0 0 0] [1]
[h](x0, x1) = [0 0 0 0]x0 + [0 0 0 1]x1 + [0]
[0 0 0 1] [0 0 0 0] [0],
[1 0 0 1] [1 0 0 0]
[0 0 0 1] [0 0 0 0]
[g](x0, x1) = [0 0 0 0]x0 + [0 0 0 0]x1
[0 0 0 1] [0 0 0 0] ,
[1 0 0 0] [0]
[0 0 0 0] [0]
[f](x0) = [0 0 0 0]x0 + [0]
[0 0 0 1] [1]
orientation:
[1 0 0 1] [1 0 0 0] [1] [1 0 0 1] [1 0 0 0] [0]
[0 0 0 1] [0 0 0 0] [1] [0 0 0 0] [0 0 0 0] [0]
g(f(x),y) = [0 0 0 0]x + [0 0 0 0]y + [0] >= [0 0 0 0]x + [0 0 0 0]y + [0] = f(h(x,y))
[0 0 0 1] [0 0 0 0] [1] [0 0 0 1] [0 0 0 0] [1]
[1 0 0 1] [1 0 0 0] [0] [1 0 0 1] [1 0 0 0]
[0 0 0 1] [0 0 0 0] [1] [0 0 0 1] [0 0 0 0]
h(x,y) = [0 0 0 0]x + [0 0 0 1]y + [0] >= [0 0 0 0]x + [0 0 0 0]y = g(x,f(y))
[0 0 0 1] [0 0 0 0] [0] [0 0 0 1] [0 0 0 0]
problem:
strict:
weak:
g(f(x),y) -> f(h(x,y))
h(x,y) -> g(x,f(y))
Qed